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Summary 
This procedure generates random samples from ARIMA time series models. The general form of 

an ARIMA model is most easily expressed in terms of the backwards operator B, which operates 

on the time index of a data value such that B
j
Yt = Yt-j. Using this operator, the model takes the 

form 

 

   t
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where  
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and at is a random error or shock to the system at time t, usually assumed to be random 

observations from a normal distribution with mean 0 and standard deviation . For a stationary 

series,  represents the process mean. Otherwise, it is related to the slope of the forecast 

function.  is sometimes assumed to equal 0.  

 

The above model is often referred to as an ARIMA(p,d,q)x(P,D,Q)s model. It consists of several 

terms: 

 

1. A nonseasonal autoregressive term of order p. 

2. Nonseasonal differencing of order d. 

3. A nonseasonal moving average term of order q. 

4. A seasonal autoregressive term of order P 

5. Seasonal differencing of order D. 

6. A seasonal moving average term of order Q. 

 

While the general model looks formidable, the most commonly used models are relatively simple 

special cases. These include: 

 

AR(1) – autoregressive of order 1 

The observation at time t is expressed as a mean plus a multiple of the deviation from the mean 

at the previous time period plus a random shock: 

 

  ttt aYY    11
              (3) 

 

 

AR(2) – autoregressive of order 2 

The observation at time t is expressed as a mean plus multiples of the deviations from the mean 

at the 2 previous time periods plus a random shock: 

 

    tttt aYYY    2211
             (4) 

 

 

MA(1) – moving average of order 1 

The observation at time t is expressed as a mean plus a random shock at the current time period 

plus a multiple of the random shock at the previous time period: 

 

11  ttt aaY                 (5) 

 

 

MA(2) – moving average of order 2 

The observation at time t is expressed as a mean plus a random shock at the current time period 

plus multiples of the random shocks at the 2 previous time periods: 

 

2211   tttt aaaY                (6) 
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ARMA(1,1) – mixed model with 2 first order terms 

The observation at time t is expressed as a mean plus a multiple of the deviation from the mean 

at the previous time period plus a random shock at the current time period plus a multiple of the 

random shock at the previous time period: 

 

  1111   tttt aaYY               (7) 

 

 

ARIMA(0,1,1) – moving average of order 1 applied to the first differences 

The difference between the current period and the previous period is expressed as a random 

shock at the current time period plus a multiple of the random shock at the previous time period: 

 

111   tttt aaYY                 (8) 

 

It can be shown that this model is equivalent to the Simple Exponential Smoothing model. 

 

 

ARIMA(0,2,2) – moving average of order 2 applied to the second differences 

The difference of the differences is expressed as a random shock at the current time period plus 

multiples of the random shocks at the 2 previous time periods: 

 

    2211211   ttttttt aaaYYYY              (9) 

 

This model is equivalent to the Holt’s Linear Exponential Smoothing model. 

 

 

ARIMA(0,1,1)x(0,1,1)s – seasonal and nonseasonal MA terms of order 1 

The observation at time t is expressed as a combination of the observation one season ago plus 

the difference between the observation last period and its counterpart one season ago plus 

multiple of the shocks to hit the system this period, last period, and two periods one season ago: 

 

11111111   ststttsttstt aaaaYYYY          (10) 

 

Many economic time series with a seasonal component can be well represented by this model. 

 

 

Sample StatFolio: monte4.sgp 
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Data Input 

 

The initial data input dialog box allows the analyst to enter a historical time series that will be 

used to set the starting values for the simulation: 

 

  
 

Starting values: optional data to be used to set the starting values. The simulated data is 

assumed to begin immediately after the end of this data. 

 

Time indices: optional values indicating the time at which each of the starting values was 

recorded. If supplied, these values will be used to scale the plot of the simulated data. 

 

Select: optional subset selection.  

 

If no starting values are supplied, the simulation will generate random starting values by 

simulating twice as much data as requested and discarding the first half. 
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Analysis Options 

 

The Analysis Options dialog box is used to specify the model from which the desired time series 

should be generated. For example, the dialog box below requests data from a (2,0,0)x(0,0,1)12 

model: 

 

 
 

 Mean: the value of the mean . 

 

 White noise sigma: the standard deviation of the random shocks . 

 

 Sample size: n, the length of the time series to be generated. 

 

 Random seed: the seed for the random number generator. The initial default value is set 

based on the time of day. If you use the same seed more than once, you will get the same 

results. 

 

 Nonseasonal factors: the order of the nonseasonal AR factor (p), the order of nonseasonal 

differencing (d), and the order of the nonseasonal MA factor (q). The values of the AR and 

MA parameters are entered in the corresponding edit fields. 

 

 Seasonal factors: the order of the seasonal AR factor (P), the order of seasonal differencing 

(D), the order of the seasonal MA factor (Q), and the length of seasonality (s).  The values of 

the AR and MA parameters are entered in the corresponding edit fields. 

 

When the OK button is pressed, a random time series is generated from the specified model. To 

initialize the series, all values of Yt for t < 1 are set equal to the mean, while all values for at for t 

< 1 are set equal to 0. A total of 2n observations are generated, but only the last n are retained. 
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Analysis Summary 

The Analysis Summary displays the requested model: 

 

ARIMA Model Simulation 
Sample size: 100 

Seed for random number generator: 2993 

 

Mean: 10.0 

Sigma: 1.0 

 

Nonseasonal Factors 

 Order Parameters 

AutoRegressive p=2 1.1,-0.3 

Differencing d=0  

Moving Average q=0  

 

Seasonal Factors (S=12) 

 Order Parameters 

AutoRegressive P=0  

Differencing D=0  

Moving Average Q=1 0.8 
 

 

If you wish to generate the same time series again, record the seed of the random number 

generator and use it the next time you generate the series. Otherwise, each time a series is 

generated, it will be different. 
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 Time Sequence Plot 

The Time Sequence Plot displays the generated time series data in sequential order: 

 
Pane Options 

 

 
 

 Points: plot point symbols at the location of each observation. 

 

 Lines: connect the observations with a line. 
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Autocorrelations 

An important tool in modeling time series data is the autocorrelation function. The 

autocorrelation at lag k measures the strength of the correlation between observations k time 

periods apart.  The sample lag k autocorrelation is calculated from 

 

 

  
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2

1             (11) 

 

The Autocorrelations pane displays the sample autocorrelations together with large lag standard 

errors and probability limits: 
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Autocorrelations 

   Lower 95.0% Upper 95.0% 

Lag Autocorrelation Stnd. Error Prob. Limit Prob. Limit 

1 0.768758 0.1 -0.195997 0.195997 

2 0.430287 0.147715 -0.289517 0.289517 

3 0.105649 0.159758 -0.313121 0.313121 

4 -0.0422804 0.160455 -0.314487 0.314487 

5 -0.0184315 0.160567 -0.314706 0.314706 

6 0.0922117 0.160588 -0.314747 0.314747 

7 0.19766 0.161117 -0.315783 0.315783 

8 0.158793 0.163523 -0.320501 0.320501 

9 0.0316962 0.165058 -0.323509 0.323509 

10 -0.175929 0.165119 -0.323628 0.323628 

11 -0.31828 0.166983 -0.327281 0.327281 

12 -0.370336 0.172943 -0.338963 0.338963 

13 -0.183741 0.1807 -0.354166 0.354166 

14 0.0663615 0.182558 -0.357809 0.357809 

15 0.247179 0.1828 -0.358281 0.358281 

16 0.302024 0.186112 -0.364773 0.364773 

17 0.205659 0.19095 -0.374256 0.374256 

18 0.101909 0.193153 -0.378573 0.378573 

19 0.0277422 0.193689 -0.379625 0.379625 

20 0.0775123 0.193729 -0.379703 0.379703 

21 0.183506 0.194039 -0.38031 0.38031 

22 0.282405 0.195767 -0.383697 0.383697 

23 0.280609 0.199799 -0.3916 0.3916 

24 0.179063 0.203702 -0.399249 0.399249 
 

 

The standard error for rk is calculated on the assumption that the autocorrelations have “died out” 

by lag k and are equal to 0 at all lags greater or equal to k.  It is calculated from: 

 


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
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This standard error is then used to calculate 100(1-)% probability limits around zero, using a 

critical value of the standard normal distribution: 

 

 ][0 2/ krsez               (13) 

 

If  = 0.05, any sample autocorrelations that fall outside these limits are statistically significantly 

different from 0 at the 5% significance level. The StatAdvisor highlights any such 

autocorrelations in red. 

 

For the sample data, note that there are significant values for the first 2 lags and also at lag 12.  

 

Pane Options 
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 Number of lags: maximum lag k at which to calculate the autocorrelation. 

 

 Confidence level: value of 100(1-)% used to calculate the probability limits. 

 

 

Autocorrelation Function 

The Autocorrelation Function plot displays the sample autocorrelations and probability limits: 

 
Bars extending beyond the upper or lower limit correspond to statistically significant 

autocorrelations. 

 

Autocorrelation Function
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Partial Autocorrelations 

Another important tool in modeling time series data is the partial autocorrelation function. The 

partial autocorrelations are used to help identify the proper order of autoregressive model to use 

to describe an observed time series. The sample lag k partial autocorrelation kk̂ is calculated 

from the sample autocorrelations using: 
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where  

 

jkkkkjkkj   ,1,1
ˆˆˆˆ    for j = 1, 2, …, k-1          (15) 

 

The Partial Autocorrelations pane displays the sample partial autocorrelations together with 

large lag standard errors and probability limits: 

 
Partial Autocorrelations 

 Partial  Lower 95.0% Upper 95.0% 

Lag Autocorrelation Stnd. Error Prob. Limit Prob. Limit 

1 0.768758 0.1 -0.195997 0.195997 

2 -0.392904 0.1 -0.195997 0.195997 

3 -0.1534 0.1 -0.195997 0.195997 

4 0.199171 0.1 -0.195997 0.195997 

5 0.136975 0.1 -0.195997 0.195997 

6 0.0326462 0.1 -0.195997 0.195997 

7 0.038875 0.1 -0.195997 0.195997 

8 -0.217107 0.1 -0.195997 0.195997 

9 -0.036418 0.1 -0.195997 0.195997 

10 -0.193988 0.1 -0.195997 0.195997 

11 -0.0270899 0.1 -0.195997 0.195997 

12 -0.0823734 0.1 -0.195997 0.195997 

13 0.419143 0.1 -0.195997 0.195997 

14 0.00270772 0.1 -0.195997 0.195997 

15 -0.0287618 0.1 -0.195997 0.195997 

16 0.0996899 0.1 -0.195997 0.195997 

17 -0.00248173 0.1 -0.195997 0.195997 

18 0.101966 0.1 -0.195997 0.195997 

19 0.0462495 0.1 -0.195997 0.195997 

20 -0.00310214 0.1 -0.195997 0.195997 

21 0.0590796 0.1 -0.195997 0.195997 

22 -0.0531857 0.1 -0.195997 0.195997 

23 -0.100044 0.1 -0.195997 0.195997 

24 -0.0560427 0.1 -0.195997 0.195997 
 

 

The standard error for kk̂  is calculated from: 
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n
se kk

1
]ˆ[                (16) 

 

This standard error is then used to calculate 100(1-)% probability limits around zero, using a 

critical value of the standard normal distribution: 

 

 ]ˆ[0 2/ kksez               (17) 

 

If  = 0.05, any sample partial autocorrelations that fall outside these limits are statistically 

significantly different from 0 at the 5% significance level. The StatAdvisor highlights any such 

partial autocorrelations in red. 

 

 

Pane Options 

 

 
 

 Number of lags: maximum lag k at which to calculate the partial autocorrelation. 

 

 Confidence level: value of 100(1-)% used to calculate the probability limits. 

 

Partial Autocorrelation Function 

The Partial Autocorrelation Function plots the sample partial autocorrelations and probability 

limits: 
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Bars extending beyond the upper or lower limit correspond to statistically significant partial 

autocorrelations. 

Periodogram 

The autocorrelations and partial autocorrelations describe the behavior of the data in the time 

domain, i.e., by estimating statistics based on the amount of time between observations. It is also 

useful to examine the data in the frequency domain, by considering how much variability exists 

at different frequencies. It has been shown that any discrete time series can be represented as the 

sum of a set of sines and cosines at a set of frequencies called the Fourier frequencies. A typical 

component has the form 

 

   tfbtfa iiii  2sin2cos              (18) 

 

where fi is the i-th Fourier frequency. The i-th Fourier frequency is 

 

 
n

i
f i                 (19) 

 

for i = 0, 1, …, n/2 if n is even and i = 0, 1, …, (n-1)/2 if n is odd. 

 

The periodogram calculates the power in the data at each Fourier frequency by calculating: 

 

    22

2
iii ba

n
fI               (20) 

 

which is scaled so that the sum of the periodogram ordinates across all of the Fourier frequencies 

except for i = 0 yields the sum of squared deviations of the time series about its mean, i.e., 
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2
. In effect, the periodogram generates an analysis of variance by frequency. 
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The Periodogram pane displays the following table: 

 
Periodogram Table 

    Cumulative Integrated 

i Frequency Period Ordinate Sum Periodogram 

0 0.0  0.0 0.0 0.0 

1 0.01 100.0 74.6069 74.6069 0.168192 

2 0.02 50.0 7.39836 82.0052 0.18487 

3 0.03 33.3333 5.53374 87.539 0.197345 

4 0.04 25.0 9.42166 96.9606 0.218585 

5 0.05 20.0 128.435 225.396 0.508127 

6 0.06 16.6667 6.60897 232.005 0.523026 

7 0.07 14.2857 1.63018 233.635 0.526701 

8 0.08 12.5 1.85305 235.488 0.530878 

9 0.09 11.1111 6.17935 241.668 0.544809 

10 0.1 10.0 14.8544 256.522 0.578296 

11 0.11 9.09091 8.60954 265.132 0.597705 

… … … … … … 
 

 

The table includes: 

 

 Frequency: the i-th Fourier frequency fi = i/n. 

 

 Period: the period associated with the Fourier frequency, given by 1/ fi. This is the number of 

observations in a complete cycle at that frequency. 

 

 Ordinate: the periodogram ordinate I(fi). 

 

 Cumulative Sum: the sum of the periodogram ordinates at all frequencies up to and 

including the i-th. 

 

 Integrated Periodogram: the cumulative sum divided by the sum of the periodogram 

ordinates at all of the Fourier frequencies. This column represents the proportion of the 

power in the time series at or below the i-th frequency. 

 

Pane Options 

 

 
 

 Remove mean: check to subtract the mean from the time series before calculating the 

periodogram. If the mean is not removed, the ordinate at i = 0 is likely to be very large. 

 

 Taper: percent of the data at each end of the time series to which a data taper will be applied 

before the periodogram is calculated. Following Bloomfield (2000), STATGRAPHICS uses 
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a cosine taper that downweights observations close to i = 1 and i = n. This is useful for 

correcting bias if the periodogram ordinates are to be smoothed in order to create an estimate 

of the underlying spectral density function. 

 

Periodogram Plot 

The Periodogram Plot displays the periodogram ordinates: 

 

 
 

Pane Options 

 

 
 

 Remove mean: check to subtract the mean from the time series before calculating the 

periodogram. 

 

 Points: if checked, point symbols will be displayed. 

 

 Lines: if checked, the ordinates will be connected by a line. 

 

 Taper: percent of the data at each end of the time series to which a data taper will be applied 

before the periodogram is calculated. 

Periodogram
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Integrated Periodogram 

The Integrated Periodogram displays the cumulative sums of the periodogram ordinates, divided 

by the sum of the ordinates over all of the Fourier frequencies: 

 
A diagonal line is included on the plot, together with 95% and 99% Kolmogorov-Smirnov 

bounds. If the time series is purely random, the integrated periodogram should fall within those 

bounds 95% and 99% of the time.  

 

Save Results 

The generated data may be saved to a datasheet by pressing the Save Results button on the 

analysis toolbar. 
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