Power Transformations Statlet

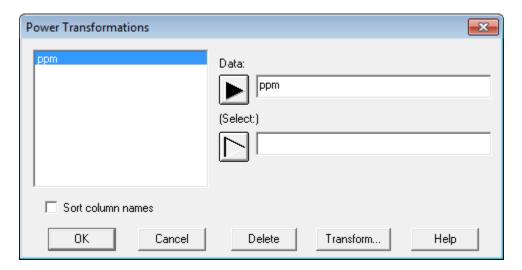
Summary	
Data Input	
1	
Calculations	

Summary

This Statlet may be used to explore the effect of applying various power transformations to a column of numeric data. It may be used to find the transformation that makes the transformed data most closely characterized by a normal distribution. The controls on the toolbar allow the user to interactively change the power. Alternatively, the Box-Cox approach may be used to find an optimal power.

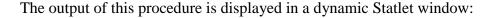
Sample StatFolio: powerstatlet.sgp

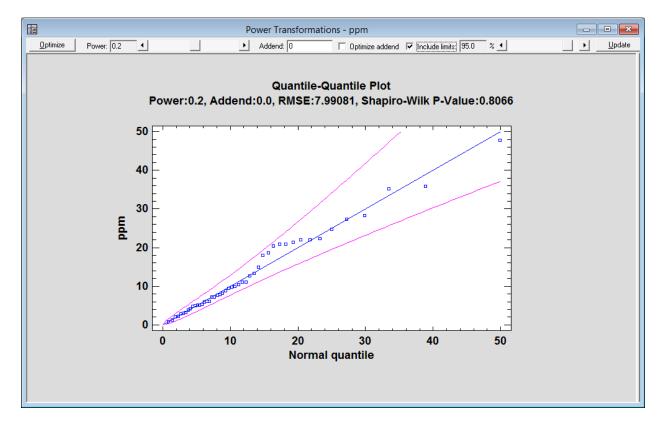
Sample Data


The file *groundwater.sgd* contains n = 47 measurements of the concentration of uranium in groundwater samples taken from a location in northwest Texas. The table below shows a partial list of the data from that file:

8.25
2.82
4.16
18.66
12.72
8.75
2.29
7.22
9.76
7.72
27.38
5.14

The concentration is measured in parts per million.


Data Input


The data input dialog box requests the name of the column containing the data values to be analyzed:

- **Data:** name of the numeric column containing the *n* observations.
- **Select:** optional subset selection.

Statlet

The window shows a quantitle-quantile plot which compares the transformed values of the response variable Y to quantiles of the best-fitting normal distribution. The transformed values of Y are given by the power transformation defined by:

$$Y' = (Y + \Delta)^p \qquad \text{if } p \neq 0 \tag{1}$$

$$Y' = \ln(Y + \Delta) \qquad \text{if } p = 0 \tag{2}$$

where Δ is an optional addend that is added to each data value to be sure that all values are greater than 0, and p is a power between -5 and +5.

The controls on the toolbar allows you to specify the *power* and *addend*. If you press the *Optimize* button, the program will use the Box-Cox procedure to find an optimal value of p. If you first check *Optimize addend* and then press the *Optimize* button, optimal values will be found for both p and Δ .

You may also elect to *Include limits* on the plot. If so, confidence limits are added for the normal quantiles at the specified level of confidence.

Calculations

The Box-Cox procedure automatically determines the best power transformation by finding the value of *p* that minimizes the standard deviation of the observations when transformed according to the Box-Cox transformation:

$$Y' = 1 + \frac{(Y + \Delta)^p - 1}{pg^{p-1}}$$
 if $p \neq 0$ (3)

$$Y' = 1 + g \ln(X + \Delta) \qquad \text{if} \qquad p = 0 \tag{4}$$

where g is the geometric mean of the observations after adding Δ :

$$g = \left(\prod_{i=1}^{n} (X_i + \Delta)\right)^{1/n} \tag{5}$$

The RMSE displayed by the Statlet is the sample standard deviation of the transformed values.