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Simple Regression 
 
Summary 
The Simple Regression procedure is designed to construct a statistical model describing the 
impact of a single quantitative factor X on a dependent variable Y. Any of 27 linear and 
nonlinear models may be fit, using either least squares or a resistant estimation procedure. Tests 
are run to determine the statistical significance of the model. The fitted model may be plotted 
with confidence limits and/or prediction limits. Residuals may also be plotted and influential 
observations identified. 
 
Sample StatFolio: simple reg.sgp 
 
Sample Data: 
The file nonlin.sgd contains data on the amount of available chlorine in samples of a product as a 
function of the number of weeks since it was produced. The data, from Draper and Smith (1998), 
consists of n = 44 samples, a portion of which are shown below: 
 

Weeks Chlorine 
8 0.49 
8 0.49 
10 0.48 
10 0.47 
10 0.48 
10 0.47 
12 0.46 
12 0.46 
12 0.45 
12 0.43 
14 0.45 
14 0.43 
14 0.43 
… … 

 
 
 
 
Data Input 
The data input dialog box requests the names of the columns containing the dependent variable 
Y and the independent variable X: 
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 Y: numeric column containing the n observations for the dependent variable Y. 
 
 X: numeric column containing the n values for the independent variable X. 
 
 Select: subset selection. 
 

Analysis Summary 
The Analysis Summary shows information about the fitted model. 
 
Simple Regression - chlorine vs. weeks 
Dependent variable: chlorine 
Independent variable: weeks 
Linear model: Y = a + b*X 
 
Coefficients 
 Least Squares Standard T  
Parameter Estimate Error Statistic P-Value 
Intercept 0.48551 0.00589066 82.4204 0.0000 
Slope -0.00271679 0.000243115 -11.1749 0.0000 

 
Analysis of Variance 
Source Sum of Squares Df Mean Square F-Ratio P-Value 
Model 0.0295587 1 0.0295587 124.88 0.0000 
Residual 0.00994133 42 0.000236698   
Total (Corr.) 0.0395 43    

 
Correlation Coefficient = -0.865055 
R-squared = 74.8321 percent 
R-squared (adjusted for d.f.) = 74.2328 percent 
Standard Error of Est. = 0.015385 
Mean absolute error = 0.012834 
Durbin-Watson statistic = 0.992081 (P=0.0001) 
Lag 1 residual autocorrelation = 0.451981 

 
Included in the output are: 
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 Variables and model: identification of the input variables and the model that was fit. By 
default, a linear model of the form 

 
Y = a + b X         (1) 

 
is fit, although a different model may be selected using Analysis Options. 
 

 Coefficients: the estimated coefficients, standard errors, t-statistics, and P values. The 
estimates of the model coefficients can be used to write the fitted equation, which in the 
example is 

 
chlorine = 0.48551 – 0.00271679 weeks     (2) 

 
The t-statistic tests the null hypothesis that the corresponding model parameter equals 0, 
versus the alternative hypothesis that it does not equal 0. Small P-Values (less than 0.05 if 
operating at the 5% significance level) indicate that a model coefficient is significantly 
different from 0. In the sample data, both the intercept and slope are statistically significant. 

 
 Analysis of Variance: decomposition of the variability of the dependent variable Y into a 

model sums of squares and a residual or error sum of squares. Of particular interest is the F-
test and its associated P-value, which tests the statistical significance of the fitted model. A 
small P-Value (less than 0.05 if operating at the 5% significance level) indicates that a 
significant relationship of the form specified exists between Y and X. In the sample data, the 
model is highly significant. 

 
 Statistics: summary statistics for the fitted model, including: 
 

Correlation coefficient - measures the strength of the linear relationship between Y and X on 
a scale ranging from -1 (perfect negative linear correlation) to +1 (perfect positive linear 
correlation). In the sample data, the correlation between chlorine and weeks is relatively 
strong, with the negative sign indicating that chlorine goes down as weeks goes up. 
 
R-squared - represents the percentage of the variability in Y which has been explained by the 
fitted regression model, ranging from 0% to 100%. For the sample data, the regression has 
accounted for about 75% of the variability in the chlorine measurements.  The remaining 
25% is attributable to deviations around the line, which may be due to other factors, to 
measurement error, or to a failure of the linear model to fit the data adequately. 

 
Adjusted R-Squared – the R-squared statistic, adjusted for the number of coefficients in the 
model. This value is often used to compare models with different numbers of coefficients. 
 
Standard Error of Est. – the estimated standard deviation of the residuals (the deviations 
around the model). This value is used to create prediction limits for new observations. 
 
Mean Absolute Error – the average absolute value of the residuals. 
 
Durbin-Watson Statistic – a measure of serial correlation in the residuals. If the residuals 
vary randomly, this value should be close to 2. A small P-value indicates a non-random 
pattern in the residuals. For data recorded over time, a small P-value could indicate that some 
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trend over time has not been accounted for. In the current example, a small P-value is 
indicative of the fact that the linear model has not picked up all of the structure in the data, as 
will be seen when the residuals are plotted. 
 
Lag 1 Residual Autocorrelation – the estimated correlation between consecutive residuals, on 
a scale of –1 to 1. Values far from 0 indicate that significant structure remains unaccounted 
for by the model. 
 

Analysis Options 

 
 
 Type of Model: the model to be estimated. All of the models displayed can be linearized by 

transforming either X, Y, or both. When fitting a nonlinear model, STATGRAPHICS first 
transforms the data, then fits the model, and then inverts the transformation to display the 
results. 

 
 Include constant: whether to include a constant term in the model. A linear model without a 

constant term will go through the origin. 
 
 Alternative Fit: an alternative estimation procedure. If selected, an additional set of 

estimates will be added to the output. Two methods of estimation are available, both of 
which are resistant to outliers: 

 
Minimize absolute deviations – minimizes the sum of the absolute values of the 
deviations around the fitted model. 

 
Use medians of 3 groups – using Tukey’s method of fitting a straight line, in which the 
data are divided into 3 groups according to the value of X, medians computed within each 
group, and a line determined from the 3 medians. 
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The available models are shown in the following table: 
 
Model Equation Transformation on Y Transformation on X 
Linear y x  0 1  none none 

Square root-Y  y x  0 1

2

 
square root none 

Exponential  y e x  0 1

 
log none 

Reciprocal-Y  1
10

 xy    reciprocal none 

Squared-Y xy 10    square none 

Square root-X y   0 1  x none square root 

Double square root  2

10 xy     square root square root 

Log-Y square root-X  xey 10    log square root 

Reciprocal-Y square 
root-X 

 1

10


 xy    reciprocal square root 

Squared-Y square root-
X 

xy 10    square square root 

Logarithmic-X y   x 0 1 ln( )  none log 

Square root-Y log-X  2
10 )ln(xy   

 

square root log 

Multiplicative y x  
0

1

 
log log 

Reciprocal-Y log-X 

)ln(

1

10 x
y

 
  

reciprocal log 

Squared-Y log-X )ln(10 xy    square log 

Reciprocal-X xy /10    none reciprocal 

Square root-Y 
reciprocal- X 

 2
10 / xy     square root reciprocal 

S-curve  y e x  0 1/

 
log reciprocal 

Double reciprocal  1
0 /  xy    reciprocal reciprocal 

Squared-Y reciprocal-X xy /10    square reciprocal 

Squared-X 2
10 xy    none square 

Square root-Y squared-
X 

 22
10 xy     square root square 

Log-Y squared-X  2
10 xey    log square 

Reciprocal-Y squared-X  12
10


 xy    reciprocal square 

Double squared 2
10 xy    square square 

Logistic  

  y
e

e

x

x








 

 

0 1

0 11
 

y/(1-y) none 

Log probit y x   ( ln(0 1 ))  1( )y  (inv. normal) 
log 
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To determine which model to fit to the data, the output in the Comparison of Alternative Models 
pane described below can be helpful, since it fits all of the models and lists them in decreasing 
order of R-squared. 
 
Example – Resistant Fit 
Selecting Minimum absolute deviations on the Analysis Options dialog box shows an alternative 
estimate of the line relating chlorine and weeks: 
 
Simple Regression - chlorine vs. weeks 
Dependent variable: chlorine 
Independent variable: weeks 
Linear model: Y = a + b*X 
 
Coefficients 
 Least Squares Standard T  M.A.D. 
Parameter Estimate Error Statistic P-Value Estimate 
Intercept 0.48551 0.00589066 82.4204 0.0000 0.48 
Slope -0.00271679 0.000243115 -11.1749 0.0000 -0.0025 

 
Analysis of Variance 
Source Sum of Squares Df Mean Square F-Ratio P-Value 
Model 0.0295587 1 0.0295587 124.88 0.0000 
Residual 0.00994133 42 0.000236698   
Total (Corr.) 0.0395 43    

 
Correlation Coefficient = -0.865055 
R-squared = 74.8321 percent 
R-squared (adjusted for d.f.) = 74.2328 percent 
Standard Error of Est. = 0.015385 
Mean absolute error = 0.012834 
Durbin-Watson statistic = 0.992081 (P=0.0001) 
Lag 1 residual autocorrelation = 0.451981 
Mean absolute deviation = 0.0127273 

 
The column labeled M.A.D. estimate shows the alternative fit: 
 

chlorine = 0.48 – 0.0025 weeks       (3) 
 
The difference between the 2 fitted models is relatively minor. 
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Plot of Fitted Model 
This pane shows the fitted model or models, together with confidence limits and prediction limits 
if desired. 

Plot of Fitted Model
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The plot includes: 
 

 The line of best fit or prediction equation: 
 

xbay ˆˆˆ           (4) 
 

This is the equation that would be used to predict values of the dependent variable Y 
given values of the independent variable X.  Note that it does a relatively good job of 
picking up much of the negative correlation between chlorine and weeks. 
 

 Confidence intervals for the mean response at X. These are the inner bounds in the 
above plot and describe how well the location of the line has been estimated given the 
available data sample.  As the size of the sample n increases, these bounds will become 
tighter.  You should also note that the width of the bounds varies as a function of X, with  
the line estimated most precisely near the average value x . 

 
 Prediction limits for new observations. These are the outer bounds in the above plot and 

describe how precisely one could predict where a single new observation would lie.  
Regardless of the size of the sample, new observations will vary around the true line with 
a standard deviation equal to . 

 
The inclusion of confidence limits and prediction limits and their default confidence level is 
determined by settings on the ANOVA/Regression tab of the Preferences dialog box, accessible 
from the Edit menu.  
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Pane Options 
 

 
 
 Plot: the model or models to plot. 
 
 Include: the limits to include on the plot. 
 
 Confidence Level: the confidence percentage for the limits. 
 
 X-Axis Resolution: the number of values of X at which the line is determined when plotting. 

Higher resolutions result in smoother plots. 
 
 Type of Limits: whether to plot two-sided confidence intervals or one-sided confidence 

bounds. 
 
 

Lack-of-Fit Test 
When more than one observation has been recorded at the same value of X, a lack-of-fit test can 
be performed to determine whether the selected model adequately describes the relationship 
between Y and X. The Lack-of-Fit pane displays the following table: 
 

Analysis of Variance with Lack-of-Fit 
Source Sum of Squares Df Mean Square F-Ratio P-Value 
Model 0.0295587 1 0.0295587 124.88 0.0000 
Residual 0.00994133 42 0.000236698   
   Lack-of-Fit 0.00757467 16 0.000473417 5.20 0.0001 
   Pure Error 0.00236667 26 0.0000910256   
Total (Corr.) 0.0395 43     

 
The lack-of-fit test decomposes the residual sum of squares into 2 components: 
 

1. Pure error: variability of the Y values at the same value of X. 
2. Lack-of-fit: variability of the average Y values around the fitted model. 
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Of primary interest is the P-Value for lack-of-fit. A small P-value (below 0.05 if operating at the 
5% significance level) indicates that the selected model does not adequately describe the 
observed relationship. 
 
For the example data, the very small P-value indicates that the linear model does not adequately 
explain the relationship between chlorine and weeks. 
 

Observed versus Predicted 
The Observed versus Predicted plot shows the observed values of Y on the vertical axis and the 
predicted values Ŷ on the horizontal axis. 

Plot of chlorine
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If the model fits well, the points should be randomly scattered around the diagonal line.  It is 
sometimes possible to see curvature in this plot, which would indicate the need for a curvilinear 
model rather than a linear model.  Any change in variability from low values of X to high values 
of X might also indicate the need to transform the dependent variable before fitting a model to 
the data.  In the above plot, the variability appears to be fairly constant.  However, some 
evidence of curvature is present. 
 
 

Residual Plots 
As with all statistical models, it is good practice to examine the residuals. In a regression, the 
residuals are defined by 
 
           (5) iii yye ˆ
 
i.e., the residuals are the differences between the observed data values and the fitted model. 
 
The Simple Regression procedure creates 3 residual plots: 
 

1. versus X. 
2. versus predicted value Ŷ . 
3. versus row number. 

 



STATGRAPHICS – Rev. 7/7/2009 

 2009 by StatPoint Technologies, Inc.  Simple Regression - 10 

Residuals versus X 
This plot is helpful in visualizing any need for a curvilinear model. 

Residual Plot
chlorine = 0.48551 - 0.00271679*weeks
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Note that between 20 and 30 weeks, all of the residuals lie below 0 (shown by the horizontal 
line).  Within this range, the straight line over-predicts the amount of available chlorine.  It also 
tends to under-predict the amount beyond 30 weeks. 
 
Residuals versus Predicted 
This plot is helpful in detecting any heteroscedasticity in the data. 

Residual Plot
chlorine = 0.48551 - 0.00271679*weeks
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Heteroscedasticity occurs when the variability of the data changes as the mean changes, and 
might necessitate transforming the data before fitting the regression model. It is usually 
evidenced by a funnel-shaped pattern in the residual plot. 
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Residuals versus Observation 
This plot shows the residuals versus row number in the datasheet: 

Residual Plot
chlorine = 0.48551 - 0.00271679*weeks
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If the data are arranged in chronological order, any pattern in the data might indicate an outside 
influence. In the above plot, curvature can be seen since the example data file is sorted according 
to the values of X. 
 
Pane Options 
 

 
 
The following residuals may be plotted on each residual plot: 
 

1. Residuals – the residuals from the least squares fit. 
2. Studentized residuals – the difference between the observed values yi and the predicted 

values iŷ when the model is fit using all observations except the i-th, divided by the 

estimated standard error.  These residuals are sometimes called externally deleted 
residuals, since they measure how far each value is from the fitted model when that 
model is fit using all of the data except the point being considered.  This is important, 
since a large outlier might otherwise affect the model so much that it would not appear to 
be unusually far away from the line. 

3. Residuals from alternative model – the residuals from the model when estimated using 
the selected resistant method. 
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Comparison of Alternative Models 
The Comparison of Alternative Models pane shows the R-squared values obtained when fitting 
each of the 27 available models: 
 

Comparison of Alternative Models 
Model Correlation R-Squared 
Squared-Y reciprocal-X 0.9367 87.75% 
Reciprocal-X 0.9333 87.11% 
Square root-Y reciprocal-X 0.9312 86.71% 
S-curve model 0.9288 86.27% 
Double reciprocal -0.9233 85.25% 
Reciprocal-Y logarithmic-X 0.9219 84.99% 
Multiplicative -0.9218 84.98% 
Logarithmic-X -0.9207 84.77% 
Squared-Y logarithmic-X -0.9185 84.36% 
Reciprocal-Y square root-X 0.9038 81.69% 
Logarithmic-Y square root-X -0.9012 81.21% 
Square root-X -0.8974 80.54% 
Squared-Y square root-X -0.8926 79.68% 
Reciprocal-Y 0.8759 76.73% 
Exponential -0.8710 75.87% 
Square root-Y -0.8682 75.37% 
Logistic -0.8665 75.08% 
Log probit -0.8662 75.03% 
Linear -0.8651 74.83% 
Squared-Y -0.8581 73.63% 
Reciprocal-Y squared-X 0.8023 64.37% 
Logarithmic-Y squared-X -0.7941 63.05% 
Square root-Y squared-X -0.7896 62.34% 
Squared-X -0.7849 61.60% 
Double squared -0.7748 60.04% 
Double square root <no fit>  
Square root-Y logarithmic-X <no fit>   

 
The models are listed in decreasing order of R-squared. When selecting an alternative model, 
consideration should be given to those models near the top of the list. However, since the R-
Squared statistics are calculated after transforming X and/or Y, the model with the highest R-
squared may not be the best. You should always plot the fitted model to see whether it does a 
good job for your data. 
 
Example: Fitting a Nonlinear Model 
Since the Squared-Y Reciprocal-X model has the highest R-squared value, it is a reasonable 
candidate for the sample data. Selecting that model using Analysis Options shows the following 
result: 
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Plot of Fitted Model
chlorine = sqrt(0.131783 + 0.895725/weeks)
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Visually, it appears to capture well the observed curvature in the data. Several of the other 
models give very similar results. 
 

Unusual Residuals 
Once the model has been fit, it is useful to study the residuals to determine whether any outliers 
exist that should be removed from the data. The Unusual Residuals pane lists all observations 
that have Studentized residuals of 2.0 or greater in absolute value. 
 

Unusual Residuals 
   Predicted  Studentized 
Row X Y Y Residual Residual 
10 12.0 0.43 0.454342 -0.0243423 -2.50 
17 18.0 0.46 0.426082 0.0339182 3.72 
18 18.0 0.45 0.426082 0.0239182 2.39  

 
Studentized residuals greater than 3 in absolute value correspond to points more than 3 standard 
deviations from the fitted model, which is an extremely rare event for a normal distribution. In 
the sample data, row #17 is almost 4 standard deviations out. 
 
Points can be removed from the fit while examining the Plot of the Fitted Model by clicking on a 
point and then pressing the Exclude/Include button on the analysis toolbar: 

Plot of Fitted Model
chlorine = sqrt(0.131086 + 0.895701/weeks)
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Excluded points are marked with an X. For the sample data, removing row #17 has little effect 
on the fitted model. 
 

Influential Points 
In fitting a regression model, all observations do not have an equal influence on the parameter 
estimates in the fitted model.  In a simple regression, points located at very low or very high 
values of X have greater influence than those located nearer to the mean of X.  The Influential 
Points pane displays any observations that have high influence on the fitted model: 
 

Influential Points 
   Predicted Studentized  
Row X Y Y Residual Leverage 
1 8.0 0.49 0.493709 -0.42 0.170244 
2 8.0 0.49 0.493709 -0.42 0.170244 

Average leverage of single data point = 0.0454545 
 
The above table shows every point with leverage equal to 3 or more times that of an average data 
point, where the leverage of an observation is a measure of its influence on the estimated model 
coefficients. In general, values with leverage exceeding 5 times that of an average data value 
should be examined closely, since they have unusually large impact on the fitted model.   
 
In the sample data, the two values at X = 8 have a moderately large influence on the fitted model, 
since these values correspond to the minimum value of X.  Compared to the average leverage h  
= 0.045, these points have close to 4 times the influence of an average point.  Ideally, one would 
prefer a data set in which all values had approximately the same leverage, since no point would 
then have excessive impact on the fitted model.  In many cases, this cannot be achieved, but the 
high leverage points should at least be checked to insure their validity. 
 

Forecasts 
The Forecasts pane creates predictions using the fitted least squares model. 
 

Predicted Values 
  95.00%  95.00%  
 Predicted Prediction Limits Confidence Limits 
X Y Lower Upper Lower Upper 
10.0 0.470485 0.449151 0.490892 0.464671 0.476227 
15.0 0.437605 0.41521 0.458909 0.434084 0.441099 
20.0 0.420202 0.396859 0.442314 0.416737 0.423638 
25.0 0.409405 0.385331 0.432139 0.405391 0.41338 
30.0 0.402046 0.377409 0.425258 0.397462 0.406577 
35.0 0.396706 0.371626 0.420291 0.391636 0.401711 
40.0 0.392653 0.367218 0.416538 0.387182 0.398048  

 
Included in the table are: 
 

 X - the value of the independent variable at which the prediction is to be made. 
 

 Predicted Y - the predicted value of the dependent variable using the fitted model. 
 

 Prediction limits - prediction limits for new observations at the selected level of 
confidence (corresponds to the outer bounds on the plot of the fitted model). 
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 Confidence limits - confidence limits for the mean value of Y at the selected level of 

confidence (corresponds to the inner bounds on the plot of the fitted model). 
 
For example, at X = 30 weeks, the best prediction of the mean amount of available chlorine is 
0.402, although it could easily be anywhere between 0.397 and 0.407.  In addition, one could 
predict with 95% confidence that any sample produced 30 weeks after production would fall 
between  0.377 and 0.425. Obviously, the mean can be estimated much more closely that the 
observed value of any single random sample. 
 
Pane Options 
 

 
 
 Confidence Level: confidence percentage for the intervals. 
 
 Type of Limits: whether to display two-sided limits or one-sided bounds. 
 
 Forecast at X: up to 10 values of X at which to make predictions. 
 

Save Results 
The following results may be saved to the datasheet: 
 

1. Predicted Values – the predicted value of Y corresponding to each of the n observations. 
2. Lower Limits for Predictions – the lower prediction limits for each predicted value. 
3. Upper Limits for Predictions – the upper prediction limits for each predicted value. 
4. Lower Limits for Forecast Means – the lower confidence limits for the mean value of Y 

at each of the n values of X. 
5. Upper Limits for Forecast Means– the upper confidence limits for the mean value of Y at 

each of the n values of X. 
6. Residuals – the n residuals. 
7. Studentized Residuals – the n Studentized residuals. 
8. Leverages – the leverage values corresponding to the n values of X. 
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9. Predictions from resistant model – the predicted values of Y made with the model 
estimated using the alternative fit resistant method. 

10. Residuals from resistant model – the residuals calculated from the model estimated using 
the alternative fit resistant method. 

11. Model statistics – summary statistics for the regression model. 
12. Statistics labels – identifiers for each of the model statistics. 

 
Note: If limits are saved, they will correspond to the settings on the Forecasts pane. If two-sided 
limits are displayed in the Forecasts table, then the saved limits will also be two-sided. If one-
sided bounds are displayed in the table, then the saved limits will also be one-sided. 
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Calculations 
 
Least Squares Estimates 
 

xx

xy

S

S
1̂           (6) 

xy 10
ˆˆ             (7) 

where 


2

1




n

i
ixx xxS           (8) 

  yyxxS i

n

i
ixy  

1





        (9) 

 
 
ANOVA Table 
 

Model sum of squares:       (10) 
    

XXSSSR 2
1̂

 Error sum of squares:      (11) 
2

1
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ˆˆ



n

i
ii xySSE 

 Mean squares error: 
2


n

SSE
MSE        (12) 

            

 F-ratio: 
MSE

SSR
F           (13) 

 

Lack-of-fit: 
2

1 1

ˆ
 


c

j

n

i
ijj

j

yySSLOF        (14) 

 Pure Error: 
2

1 1

 


c

j

n

i
jij

j

yySSPE         (15) 

 F-Ratio for lack-of-fit: 
)/(

)2/(

cnSSPE

cSSLOF
F




       (16) 

 
 
where c = number of unique values of X.
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Standard Errors 
 











XXS

X

n
MSEs

2

0

1
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XXS

MSE
s )ˆ( 1                     (18) 

 
 
Correlation Coefficient 

 

  

    
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


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1 1

22
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R-Squared 
 

SSESSR

SSR
R


2          (20) 

 
 
Adjusted R-Squared 
 

%
2

1
11002


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
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
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





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Standard Error of Est. 
 

MSE̂           (22) 
 
 
Predictions 
 

xy 10
ˆˆˆ             (23) 

 

Confidence limits:
 

xx
n S

xx

n
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2
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1
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
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 Prediction limits: 
 

xx
n S
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n
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2
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1
1ˆˆ


        (25) 
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Leverage 
 

 
xx

i
i S

xx

n
h

2
1 
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Durbin-Watson Statistic 
 

 








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If n > 500, then  
 

n

D
D

/4

2* 
                                            (28) 

 
is compared to a standard normal distribution.  For 100 < n ≤ 500, D/4 is compared to a beta 
distribution with parameters 
 

2

1


n                                            (29) 

 
For smaller sample sizes, D/4 is compared to a beta distribution with parameters which are based 
on the trace of certain matrices related to the X matrix, as described by Durbin and Watson 
(1951) in section 4 of their classic paper.   
 
 
Lag 1 Residual Autocorrelation 
 









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Modifications if No Constant 
 
The following formulas are modified as shown if no constant is included in the model: 
 

0ˆ
0             (7A) 
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
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